2003 LARP Collaboration Meeting

Quad R&D Issues and Options

Vadim Kashikhin, Fermilab

September 16-18, Danfords on the Sound, NY

Design options

Two fundamental design approaches to 2nd generation LHC IRs:

- 1. single-bore inner triplet design with a maximum aperture;
- 2. dipole-first designs with double-bore quadrupoles with a maximum aperture at a minimum beam separation.

Quadrupole parameters:

```
>90 mm coil aperture;
```

205 T/m nominal gradient and 20% quench margin;

1.9 K (4.5 K) operating temperature.

R&D questions

- Optimum design for large-aperture quadrupoles?
- Optimum aperture?
- Optimum bore separation for double-bore magnets?
- Field quality in single and double bore magnets?
- Temperature margin and quench protection?
- Mechanical support and coils prestress?
- Cryogenics?

These questions have to be addressed during conceptual design studies and model magnet R&D.

Quadrupole coil designs

90-mm

100-mm

110-mm

 $N_{\text{turns}} = 144$ $S_{\text{coil}}, \text{cm}^2 = 48.1$ 22859.3

248 84.9

Quadrupole magnet yoke with cooling holes

Yoke saturation can be controlled by hole optimization

Double-bore magnet

Field errors can be < 10⁻⁴ with bore separation > 250 mm and yoke OD > 700 mm

Bore separation and yoke size can be reduced in a "warm" yoke design,

but the coils would have to have considerable left-right asymmetry and a large number of wedges

Thermal analysis

The Nb₃Sn magnet designed with 20 % quench margin can take 40 mW/cm³ of peak power dissipation in the midplane turns.

Quench protection

The inductance and stored energy the 110-90 mm quads and calculated T_{hs} and T_{blk} are reported below for F_{qh} of 50% and 25%.

The acceptable T_{max} for accelerator magnets is 300-400 K and F_{qh} <50%.

Even for F_{qh} =25% T_{max} is within 315-335 K. With F_{qh} =50% T_{max} does not exceed 250 K.

Parameter		Aperture		
		110 mm	100 mm	90 mm
L, mH/m		17.46	14.71	4.86
W(205 T/m), kJ/m		1181	703	468
T _{hs} , K	F _{ah} =50%	230	225	230
	$F_{qh}=25\%$	335	320	315
T _{blk} K	F _{ah} =50%	150	140	127
	$F_{qh}=25\%$	220	200	180

"Warm" vs. "cold" yoke design

Maximum gradient in a warm yoke design drops by only 3-4 %

Forces and stresses

Stress in the 110 mm quad coil reaches 100 MPa. The coil needs to be pre-stressed during assembly to the level where irreversible superconductor degradation occurs.

A possibility of bladder technique can be explored to reduce stresses.

Summary

The studies show that 90-110-mm aperture quadrupole magnets using Nb_3Sn strands, expected to be available in the next few years, can provide the maximum field gradient of 250-260 T/m with an acceptable field quality.

The cold yoke design have large holes for cooling that can be optimized for good field quality.

A warm yoke can be an interesting option for a single-bore magnet but rather challenging for double-bore design.

Peak temperatures during quench are acceptable for all the designs in spite of large stored energies.

The mechanical structure needs to be carefully optimized during R&D.